FEDERATION OF OBSTETRIC & Gynaecological societies of India

FOGSI GCPR on Fetal Growth Restriction

Coordinators Dr Alpesh Gandhi Dr Atul Ganatra Dr K Aparna Sharma

www.fogsi.org

FOGSI GCPR on **Fetal Growth Restriction**

Dr Alpesh Gandhi President FOGSI

CONSENSUS DEVELOPMENT GROUP

Dr Alpesh Gandhi	Dr Kushagradhi Ghosh	Dr Prashant Acharya
Dr Archana Baser	Dr Mandakini Pradhan	Dr Pratap Kumar
Dr Atul Ganatra	Dr Mandakini Megh	Dr Rakhi Rai
Dr Anubhuti Rana	Dr Narendra Malhotra	Dr Sanjay Gupte
Dr Chinmayee Ratha	Dr N. Palaniappan	Dr Sareena Gilwaz
Dr Jayprakash Shah	Dr Parikshit Tank	Dr Suchitra Pandit
Dr K Aparna Sharma	Dr Prakash Mehta	Dr Uday Thanawala

COORDINATORS

Dr Alpesh Gandhi | Dr Atul Ganatra

Dr K Aparna Sharma

INTRODUCTION

The evaluation of fetal growth is one of the key objectives of the prenatal care. Identification of a small fetus, classifying fetal growth restriction(FGR), understanding the etiology and risk factors , formulating a comprehensive strategy and timing of delivery is imperative to have a successful perinatal outcome. These recommendations have been drafted by a panel of experts from across the country based on the ideal practice while at the same time certain modifications have been suggested to adapt to the varied resource settings in the country. These guidelines provide a road map to practice and by no means are binding for the management of a case of fetal growth restriction where physician experience and individual patient characteristics may warrant deviation from the protocols.

DOCUMENT OUTLINE

Ι.	Definition and classification	I
2.	Etiology and risks factors for FGR	4
3.	Early prediction and prevention of FGR	6
4.	Screening and diagnosis of FGR	8
5.	Investigations for causes of FGR	13
6.	Medical management of FGR	19
7.	Management of pregnancies with FGR : monitoring	22
8.	Management of FGR: timing of delivery	28
9.	Postpartum follow up and counselling for future pregnancies	30
10.	Summary	35

SECTION 1. DEFINITION AND CLASSIFICATION

Definition:

FGR is defined as the failure of the fetus to meet its biological growth potential due to a pathological factor.¹ However, assessment of fetal growth potential is very difficult to determine. More often than not, estimates of fetal weight at a given point in time are more readily available than multiple observations of fetal size over time. In clinical practice, small for gestational age (SGA) is defined when the size (biometric evaluation) of the fetus falls below a predefined threshold for its gestational age. This is commonly defined as estimated fetal weight (EFW) or abdominal circumference (AC) below a certain threshold such as the 10th percentile and is used interchangeably quite frequently with FGR. Thus, there is more controversy than consensus about the definition, classification and diagnosis of FGR.

The main distinction between SGA and FGR is that a SGA fetus may be small but not at increased risk of adverse perinatal outcome.¹ In order to differentiate between SGA and FGR in cases in which the fetal size is below the 10th percentile, additional biophysical parameters are required. Many methods have been proposed for this purpose, such as evaluation of fetal growth velocity, use of customized growth charts, however, Doppler velocimetric evaluation of placental and fetal circulations is the most useful criteria to differentiate between the two.

The use of SGA as a surrogate for FGR has several limitations:¹

- Most SGA fetuses are constitutionally healthy small fetuses, whose smallness is the result of their predetermined growth potential (i.e. false-positive diagnosis of FGR).
- Some growth-restricted fetuses, depending on their original growth potential and timing of insult, may remain above the percentile threshold described above and may thus not be SGA (i.e. false-negative diagnosis of FGR).
- Use of SGA in place of FGR is limited by the accuracy of sonographic fetal weight estimation, which has an estimation error of up to $\pm 15\%$ –20%.
- The diagnosis of SGA is highly dependent on the growth chart being used, which can therefore have a considerable effect on the proportion of fetuses or infants termed as SGA in a given population.

Table 1.1 Definition of SGA and FGR as proposed by different societies

The definition of FGR varies between different guidelines and author groups.²

	SOGC, 2013	RCOG, 2014	French College of Gynecologists and Obstetricians 2015	ACOG and SMFM, 2013	ISUOG 2020	FIGO 2020
Definition of SGA	EFW < 10th population centile	Birthweig ht <10th customized centile	EFW or birthweight < 10th population centile	Birthweig ht < 10th populatio n centile	A fetus is considered to be SGA when its size (biometric evaluation) falls below a predefined threshold for its gestational age.	EFW or birth weight below the 10th percentile for gestational age
Definition of FGR	EFW < 10th or AC < 10th population centiles	EFW <10th customized centile, or AC <10th population centile	EFW < 10th customized centile	EFW <10th population centile	FGR is a condition that is frequently, but unhelpfully, defined as the fetus failing to reach its genetically predetermin ed grow th potential. (Recommend to use Delphi consensus defined below)	Small fetus that has failed to achieve its growth potential because of a pathologic process. (Recommend to use Delphi consensus defined below)
Definition of high risk FGR	Not specified	EFW <3rd centile	Evidence of reduced/ arresting of growth with or without abnormal UA or cerebral Doppler, oligohydramnios	Not specified	Not specified	Not specified

The criteria proposed by an international Delphi consensus represent the most recognized definition of FGR. The two main phenotypes of FGR, early and late, differ significantly in many aspects, such as prevalence, prediction by first-trimester ultrasound, gestational age at onset, placental histopathological findings, Doppler velocimetric profile, associated maternal disease, severity and perinatal outcome. The distinction between early and late FGR is usually based on diagnosis before or after 32 weeks gestation.

Table 1.2 Delphi Consensus Criteria for Fetal Growth Restriction and Classification³

(In absence of congenital anomalies, based on international Delphi consensus)

Early FGR	Late FGR
(Gestational age < 32 weeks) in	(Gestational age ≥ 32 weeks) in absence of congenital
absence of congenital anomalies	anomalies
$\begin{array}{l} AC/EFW < 3^{rd} \text{ centile or} \\ UA - AEDF \\ OR \\ I.AC/EFW < 10^{TH} \text{ centile combined} \\ \text{with} \\ 2.Ut \ A \ Pl > 95^{th} \ \text{centile and} \ / \ \text{or} \\ 3.UA \ Pl > 95^{th} \ \text{centile} \end{array}$	AC/EFW < 3^{rd} centile Or at least two out of three of following I.AC/EFW < 10^{TH} centile 2.AC/EFW crossing centiles > 2 quartiles on growth centiles 3.CPR < 5^{th} centile or UA PI > 95^{th} centile

FGR – Fetal Growth Restriction, AC – Abdominal Circumference, EFW – Estimated Fetal Weight,

UA – Umbilical Artery, Ut A – Uterine Artery, PI – Pulsatility Index, CPR – Cerebroplacental ratio

Table 1.3 Main clinical characteristics of early- and late-onset fetal growth restriction

Characteristic	Early-onset FGR	Late-onset FGR
Main clinical challenge	Management	Detection
Prevalence	30%	70%
Gestational age at manifestation	<32 weeks	≥32 weeks
Ultrasound findings	Fetus may be very small	Fetus not necessarily very small
Doppler velocimetry	Spectrum of Doppler alterations that involves umbilical artery, middle cerebral artery and ductus venosus	Cerebral blood flow - redistribution
Biophysical profile	May be abnormal	May be abnormal
Hypertensive disorders of pregnancy	Frequent	Not frequent
Placental histopathological findings	Poor placental implantation, spiral artery abnormalities, maternal vascular malperfusion	Less specific placental findings, mainly altered diffusion
Perinatal mortality	High	Low

SECTION 2: ETIOLOGY AND RISKS FACTORS FOR FGR

ETIOLOGY

FGR is a result of one or more maternal, placental or fetal disorders with significant overlap among these entities, that interfere with the normal mechanisms regulating fetal growth.

Table 2. I Common Etiologies of Fetal Growth Restriction 4

Maternal (preplacental) factors	Placental factors	Umbilical cord (post-placental) factors	Fetal disorders
 Hypoxemia (chronic lung disease, high altitude) Anemia Smoking, substance abuse (cocaine, methamphetamines) Malabsorption, poor weight gain Environmental toxins: air pollution, heavy metals (lead, mercury), perfluorooctanoic acid (PFOA) 	 Maternal vascular malperfusion pathology (infarction, fibrin deposition, chronic abruption) secondary to hypertensive disorders in pregnancy Fetal vascular malperfusion pathology Chronic placental inflammation (e.g. villitis of unknown etiology) Confined placental mosaicism 	 Increased coiling Increased cord length True cord knot Single umbilical artery Marginal or velamentous cord insertion 	 Genetic disorders (chromosomal, microdeletions/ duplications, single site mutations, epigenetic disorders) Structural anomalies (e.g. congenital heart disease, gastroschisis) Congenital infections (cytomegalovirus, toxoplasmosis, herpes, rubella, syphilis, Zika virus, malaria) Teratogen exposure (drugs, toxins) Multiple Pregnancy

RISK FACTORS

All women should undergo risk stratification for development of FGR at first visit based on her medical and obstetric history. The predictive value of any individual risk factor is low.

In low resource countries, anemia, undernutrition, hypertensive disorders and malaria are important causes. It is important to assess for risk factors (Table 2) at the first antenatal visit as those pregnant women found to be at high risk can benefit from close surveillance for FGR from 24-28 weeks.

History-based risk factors **Biochemical** Ultrasound-based markers markers Maternal demographics Medical conditions Obstetric • Low PIGF • Uterine artery: pulsatility history • Low index >95th PAPP- A Advanced age Chronic hypertension Previous percentile • High AFP Chronic kidney Underweight pregnancy • Uterine artery: disease Living in high altitude affected bilateral notching • Systemic lupus by FGR or • Severe anemia, Marginal or erythematosus prehemoglobinopathies velamentous • Inflammatory Environmental eclampsia cord insertion bowel disease factors (air pollution, • Two -vessel cord Antiphospholipid heavy metals, heat) syndrome (single umbilical artery) Pregestational Abnormal diabetes (long standing) placental morphology • Decreased fetal growth velocity

Table 2.2 Risk factors for Fetal Growth Restriction⁴

KEY RECOMMENDATIONS

- 1. All women to undergo risk stratification for FGR at the first antenatal visit to look for high risk factors.
- 2. Biochemical or USG markers should not be used for universal screening for FGR.
- 3. Women at high risk for FGR should undergo close surveillance for FGR from 24-28 weeks.

SECTION 3: EARLY PREDICTION AND PREVENTION OF FGR

PREDICTION OF FGR:

The identification of women at high risk to develop FGR is crucial as prenatal detection of FGR will provide an opportunity to employ interventions to reduce the morbidity and mortality associated with this problem. While the predictive value of individual risk factors is low, clinical prediction models based on combinations of the risk factors can considerably improve the prediction of FGR.⁵

Role of risk factors for prediction and prediction models: Current status^{4,6}

- Role of history-based risk factors: History based risk factors (Table 2.2) can be identified and FGR can be prevented to a large extent by established interventions for these. Moreover, prevention of exposure from environmental toxins and smoking cessation can be done.
- Role of biochemical markers: There is no role for routine screening with serum biomarkers for FGR. However, when biochemical markers are available as part of prenatal genetic screening for trisomy 21, it may be reasonable to use this information for the purpose of risk stratification for FGR. The combination of low PAPP-A in first trimester and high alphafetoprotein in second trimester is particularly predictive of severe FGR.
- Role of ultrasound markers: Uterine artery Doppler, placental morphology and placental volumes have modest predictive accuracy and cannot be recommended for universal screening for FGR as a solitary parameter.
- Role of prediction models: There is no single screening test sufficiently predictive of FGR to recommend for routine clinical use. There are some predictive models based on combination of risk factors but there are wide variations in sensitivity and specificity and none is a gold standard have not been sufficiently validated.

PREVENTION OF FETAL GROWTH RESTRICTION:

 Lifestyle modifications: This should be done ideally in the preconception period wherein; a healthy lifestyle is adopted and medical conditions are optimized. Cessation of smoking, alcohol and illicit drug use should be done.

• Medical interventions: No medical interventions to prevent FGR have been clearly established. Aspirin is recommended for women at increased risk of pre-eclampsia and FGR. However, due to the safety profile of the drug and a significant overlap in the risk factors and pathophysiology of pre-eclampsia & FGR, it is reasonable to consider aspirin to women at high risk of FGR, using the same regimen of aspirin used for prevention of pre-eclampsia. Treatment with aspirin at a dose of 150 mg starting at 12–16 weeks may be considered in selected cases such as women who are at high risk of pre-eclampsia or those with a history of placenta-mediated FGR.⁷

Key Recommendations:

- I. Categorizing the risk factors for FGR is very important to determine the further antepartum surveillance methods.
- 2. Currently, there is no single tool for prediction of FGR. None of the biochemical or ultrasound markers should be used as tools for universal screening for FGR.
- 3. Prevention of fetal growth restriction is possible by preconception lifestyle modifications. There is no evidence based medical intervention, however aspirin may be tried in selected cases such as women with a history of placenta-mediated FGR or high risk of pre-eclampsia.

SECTION 4. SCREENING AND DIAGNOSIS OF FETAL GROWTH RESTRICTION

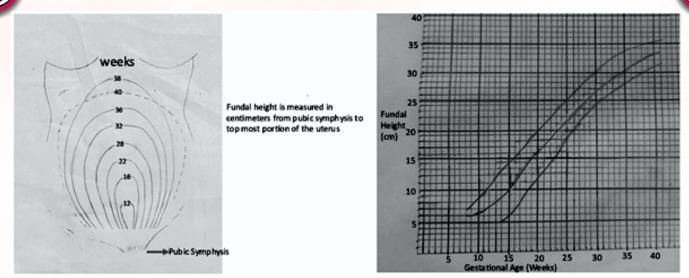
Approach to screening and diagnosis of FGR

A. Screening for FGR

I. Screening for high risk factors: (as described previously in Table 2.2)

Risk factor assessment should be done:

- Preconceptionally
- At booking in antenatal clinic
- At every antenatal visit


II. Symphysio-fundal height (SFH) :⁸

- Primary screening tool
- Simple, inexpensive tool for low risk pregnancies
- Distance from upper border of symphysis pubis to top of uterine fundus
- SFH increases by 1 cm/week between 14 and 32 weeks
- Lag in SFH of \geq 3 cm can help diagnose FGR
- Measure SFH every 2-4 weeks and at every antenatal visit from 24 weeks onwards and plot it on growth charts.
- Various local charts are available
- When SFH is less than 10th centile or on clinical suspicion of slow or static growth on serial SFH measurements, perform ultrasound to confirm FGR.
- When SFH is likely to be inaccurate as in multiple fibroids, polyhydramnios or high BMI, consider ultrasound evaluation.

FOGSI GCPR ON FETAL GROWTH RESTRICTION

III. Routine third trimester USG for growth:²

- Universal ultrasonography in late pregnancy (after 24 weeks) is not generally recommended because the test has low sensitivity and a clear outcome benefit has not been seen.
- Routine USG for fetal growth is an alternative method for screening for growth restriction.
 Although the protocols are not well laid out, scans can be done between 32 and 36 weeks with the scans closer to 36 weeks having greater predictive ability.
- It is reasonable to perform serial symphysio-fundal height measurements for screening in low risk population and recommend a third trimester growth scan for screening in women who are at high risk for fetal growth restriction.

B. Diagnosis of FGR

I. Sonographic fetal weight estimation¹⁰

- Fetal biometry by ultrasound cornerstone for detection of FGR
- Assess biparietal diameter (BPD), Head Circumference (HC), Abdominal Circumference (AC), Femur Length (FL) and Estimated Fetal Weight (EFW) from combination of these parameters

• EFW or AC:

AC may be more susceptible to bias because measurement can be technically challenging, but it reflects liver size and abdominal subcutaneous fat storage and is strongly related to fetal nutritional status.

- EFW is based on multiple measurements and hence susceptible to inherent measurement errors of each, thus potentially resulting in an overall worse predictive performance. However, EFW is more consistent with the newborn standards used to define small for gestational age since paediatricians do not typically measure AC.
- Combining the two approaches may be reasonable (i.e. FGR should be suspected if either AC or EFW is < 10th percentile)

II. Fetal Growth Velocity (FGV) and Role of Growth charts

- FGR can be detected by plotting FGV on charts and any deviation from trajectory helps in the diagnosis.
- The objective is to evaluate the fetal growth trajectory and identify those fetuses that are deviating from their individual trajectory, indicating a failure to reach their growth potential. There is evidence to suggest that reduced fetal growth velocity in the third trimester is associated with increased risk of adverse outcome.
- Fall of > 50 percentiles for AC or EFW between 2 consecutive scans is considered as reduced growth velocity.

Universal versus Customized growth charts

- Universal charts are based on assumption that all fetuses are expected to have same growth potential under optimal conditions irrespective of race or origin. Examples include Intergrowth-21st and World Health Organization (WHO) charts.^{11,12}
- Indian babies are small as compared to west with mean birth weight at term of 2.6-2.9 kg whereas it is 3.5-3.7 kg in white caucasian populations in high-income countries. Hence, the use of customized growth charts adapted according to local population should be used to reduce over or underestimation of FGR. FIGO Safe Motherhood and Newborn Health Committee recommends local or regional growth charts over universal chart.

III. Doppler Velocimetry

Doppler velocimetry is an integral tool for diagnosis and surveillance of FGR fetuses.

III. I Dopplers for uteroplacental insufficiency

Uterine artery doppler:

When uterine arteries fail to transform from high- to low-resistance circulation due to inadequate trophoblastic invasion of the spiral arteries, this is reflected as a persistence of high uterine artery mean pulsatility index (PI) (above 95th percentile) and is associated with placental insufficiency and maternal vascular malperfusion of the placenta.

• Umbilical artery doppler:

An umbilical artery pulsatility index of more than 95th centile for that gestation reflects a raised value. It indicates reduction in placental surface area available for gas and nutrient exchange and placental vascular insufficiency. Increasing severity of placental vascular insufficiency results in absent end diastolic flow (AEDF) or reverse end diastolic flow (REDF).

III. 2 Doppler for fetal adaptation

Middle cerebral artery doppler:

Reduced puslatility index (less than 5th centile), reflects a hemodynamic response in the fetus to hypoxemia which results in vasodilation and preferential shunting of blood flow (brain-sparing effect).

Ductus venosus doppler:

Alterations in the ductus venosus flow velocity waveform, especially absent or reversed awave, may be a consequence of increased intra-atrial pressure due to high cardiac afterload and/or a direct effect of fetal acidemia on myocardial cell function.

Cerebroplacental Doppler ratio (CPR) : CPR is ratio of middle cerebral artery pulsatility index divided by umbilical artery pulsatility index. A low CPR indicates fetal blood flow redistribution (brain sparing) and is predictive of adverse neonatal outcome. This has a significance beyond the individual parameters of umbilical and middle cerebral artery doppler.

Consensus definition for diagnosis of Small for gestational Age (SGA) and FGR Delphi Consensus Criteria for Fetal Growth Restriction

Delphi Consensus involves both biometric and functional parameters for the diagnosis of FGR. In most of the studies, EFW < 10th centile is taken as cut off for diagnosis of FGR. But this may encompass diagnosis of SGA fetuses. SGA fetuses are constitutionally small fetuses, not at

increased risk of adverse outcome whereas FGR fetuses are pathologically small with increased risk of adverse perinatal outcome may lead to over detection of SGA and under detection of FGR fetuses. Thus, SGA fetuses will be over-diagnosed and FGR fetuses will be under diagnosed in fetuses with an EFW > 10th centile. Hence in order to reduce this, Delphi consensus came into being. In Delphi consensus, congenital anomalies must be absent. The absolute size measures used were defined at lower cut off values of 3rd centile than 10th centile which is commonly used. Functional parameters were added either alone (AEDF in UA) or in combination (UA or Ut A PI > 95th centile). It helps in proper diagnosis of FGR and to differentiate between early and late FGR. The lower cut off of 3rd centile for size measurements reflect that the long-term outcome of severe SGA fetuses is unfavorable even in the absence of abnormal functional doppler parameters. (Table 1.1)

Key Recommendations:

1. Symphysis-fundal height is a simple and inexpensive tool that can be used as the primary screening strategy for FGR in low-risk pregnancies in both low- and high-resource setting.

2. Local or regional growth charts should be preferred over universal charts. Alternatively, universal standards may be used with locally adjusted thresholds to avoid under- or overdetection of FGR.

3. Criteria from Delphi consensus including both biometric and functional parameters should be used to define FGR.

SECTION 5. INVESTIGATIONS FOR CAUSES OF FGR

- Systematic investigation should be performed with an aim to identify the underlying etiology. However, confirmation of gestational age should be first step when FGR is suspected in order to prevent a false diagnosis of growth restriction.
- Causative factors are broadly categorized into maternal, fetal and placental disorders and a significant overlap can be found in these causes. Relevant investigations should be done based on factors on history or examination findings only.
- The exact cause may not be identified even after investigations and the couple should be counselled about the same.
- Establishing the likely etiology is essential to allow for proper counselling, surveillance, and interventions. It can also aid in preconception counselling for future pregnancies.

Table 5. I Components Of History Taking¹³

History				
Maternal	Family			
MaternalAgeEthnic groupHeight, weight, BMINutritional statusSocioeconomic statusMedicationsPersonal history of cigarette smoking and useof recreational drugsAddress the risk of congenital fetal infectionwith TORCH: History of febrile disease orrash in the pregnancy or periconceptionalperiod, recent travel to endemic areas,frequent exposure to domestic animalsDetailed previous obstetric history includingdetails of birth weight of previous childrenChronic medical conditionsThrombophiliaGenetic disorders	Family Thrombophilia Genetic disorders			

Table 5.2: Relevant investigations based on history and clinical examination¹³

Investigations for maternal factors

Evaluation	Investigation	Remarks
Haematological	 Full blood count Peripheral blood smear Coagulation screening with PT/aPTT 	For diagnosis and monitoring of pregnancy-related morbidities like anaemia, hypertensive disorders in pregnancy
Biochemical	 Blood sugar (Fasting/Postprandial) including HbA1c Liver function test Renal function test Urine analysis 	For diagnosis and monitoring of maternal medical conditions like pregestational diabetes mellitus, renal insufficiency, hypertensive disorders in pregnancy, undernutrition
Autoimmune	 Nonspecific antinuclear antibody (ANA) for initial screening Anti dsDNA antibody - specific for SLE 	For diagnosis and monitoring of maternal autoimmune conditions when clinically suspected.

Thrombophilia	 Anticardiolipin antibody (ACA), Lupus anticoagulant (LA) and Anti β₂ glycoprotien-1 	 In patients with history of recurrent pregnancy loss, preterm preeclampsia, placental insufficiency, unexplained intrauterine fetal death and current or past DVT/CVT To be done in interconceptional period preferably May be subject to facilities and resources available for testing
Infections	 Maternal Serology Cytomegalovirus and Toxoplasmosis screening Screening may also include for Rubella, Varicella and Syphilis in cases at high risk for these infections. 	It should not be offered routinely in all cases of FGR. It is only indicated when there is positive background of risk factors, based on history or ultrasound findings or in cases of unexplained FGR or early onset FGR.
	 In the context of endemic prevalence or travel history testing for Malaria should also be included¹ 	
Ultrasound	 Uterine artery Doppler Identify multiple gestation Identify any morphological abnormalities of uterus or fibroid 	Uterine artery Doppler is indicated if severe SGA is identified at the 18–20 weeks scan. High mean pulsatility index (above 95 th percentile) of uterine artery denotes placental insufficiency and maternal vascular malperfusion of the placenta.

Table 5.3 : Investigations for fetal factors

Evaluation	Investigations	Remarks
Detailed anatomy scan	 Detailed anatomic survey: Structural anomalies, soft markers, disorders of amniotic fluid Fetal echocardiography to detect major cardiac anomalies and to evaluate cardiac function. Doppler velocimetry 	Structural anomalies, soft sonographic markers or disorders of amniotic fluid (e.g., polyhydramnios) should prompt genetic counselling for possibility of chromosomal, or single gene abnormalities as the cause of FGR. Findings that are associated with congenital infections, especially in women with a relevant history can also be detected on a detailed anomaly scan. Small fetus with excess amniotic volume suggests aneuploidy or fetal infection.
Genetic evaluation by invasive prenatal diagnostic procedures	 Karyotype Chromosomal microarray (CMA) Whole exome sequencing or Clinical Exome sequencing based on couple history or index child to identify the genetic basis for FGR 	•Genetic consultation and genetic testing by amniocentesis should be offered to women with FGR, especially in cases of early-onset or severe FGR (<3rd percentile), co-presence of sonographic findings (such as structural anomalies, soft markers, or polyhydramnios), and the absence of obvious signs of placental dysfunction such as abnormal uterine or umbilical artery Doppler.

Infections	When fetal infection is highly suspected based on serology results or clinical findings, further testing should be offered by means of amniocentesis for the detection of viral DNA in the amniotic fluid using polymerase chain reaction. In these cases, amniocentesis should be delayed until after 21 weeks of gestation and at least 6–8 weeks following the estimated onset of maternal infection to minimize the risk of false negative results.	Screening for congenital infections should be offered when FGR is suspected, especially in cases of early-onset FGR or when infection is possible based on history of ultrasound findings like small head circumference, ventriculomegaly, brain or liver calcifications, periventricular hyperechogenicity, cortical brain malformations, echogenic bowel, hydrops, or placentomegaly. Testing should be focused on cytomegalovirus and toxoplasmosis, but may also include rubella, varicella, and syphilis in cases at high risk for these infections.
		Testing for Zika virus and malaria should also be considered in the
		relevant travel history or location context.

Table 5.4: Investigations for placental factors

Evaluation	Investigations	Remarks
Placenta, cord and membrane	 Gross examination of placenta and umbilical cord Histopathology (HPE) of placenta 	Gross examination of placenta and umbilical cord to detect developmental abnormalities like circumvallate placenta, chorioangioma and hemangioma or umbilical cord abnormalities such as velamentous or marginal cord insertion and single umbilical artery. HPE will be useful to detect infarction, fibrin deposition, and thrombosis.

KEY RECOMMENDATIONS:

- I. Confirmation of gestational age should be the first step when FGR is suspected.
- 2. Women with suspected FGR should undergo systematic assessment that includes the following : detailed history; detailed sonographic assessment for structural anomalies, soft markers, and sonographic signs related to fetal infection; doppler studies that include at least the umbilical artery and, when available, also the uterine and middle cerebral arteries; and maternal screening for relevant congenital infections, which should be focused on cytomegalovirus and toxoplasmosis, but may also include rubella, herpes, syphilis, malaria, and Zika virus in cases at high risk.
- In Low resource settings, the extent of investigation may be limited by available resources. Assessment should include screening for infections such as malaria and Zika virus in endemic areas.
- 4. Amniocentesis for karyotype (as well as microarray and polymerase chain reaction for infectious agents when available and indicated) should be offered to women with suspected FGR, especially in cases with early-onset severe (estimated fetal weight <3rd percentile) FGR, in the presence of sonographic findings associated with genetic or infectious etiologies or polyhydramnios and no obvious signs of placental dysfunction, and when the findings are likely to affect management.</p>

SECTION 6: MEDICAL MANAGEMENT OF FGR

Intervention **Mechanism of Action** Recommendation Bedrest Unproven benefit Reduces the • catecholamine release Improves central intravascular volume Improves uterine perfusion Low Dose Aspirin Low-dose aspirin Suppress production • • prophylaxis is not of prostaglandins and thromboxane through its recommended for irreversible inactivation of prevention of fetal growth restriction, in the absence the cyclooxygenase of risk factors for enzyme preeclampsia. (ACOG Cytoprotective mechanisms 2018) Antioxidant mechanisms No role in treatment once FGR sets in. Heparin and Anticoagulant properties Currently LMWH therapy • ٠ LMWH for the prevention of FGR and ability to prevent should be limited to the placental thrombosis and subsequent infarction research setting. Anti-inflammatory • No role in treatment once FGR sets in.

Table 6.1 Summary of treatment with unproven benefit

Table 6.2 Summary of treatment for FGR under investigation

Intervention	Mechanism of action	Current stage of investigation
Phosphodiesterase type -5 inhibitors	Selective vascular smooth muscle relaxation and vasodilatation	Phase II/III clinical trials, however neonatal pulmonary hypertension has been reported as an adverse effect and caution has been advised.
Statins	Anti-inflammatory, antioxidant, and angiogenesis	Phase II/III clinical trials
Nitric Oxide donors	Selective vascular smooth muscle relaxation and vasodilatation	Phase II nonrandomized trials
Proton pump inhibitors	Angiogenesis	Phase II/III clinical trials
Maternal VEGF gene therapy	Local vasodilatation and angiogenesis	Phase I/IIa clinical trial
Nanoparticles	Uterine blood flow, placental function	Preclinical
microRNAs	Uterine blood flow, placental function	Preclinical
Hydrogen sulphide	Selective vascular smooth muscle relaxation and vasodilatation	Preclinical
Melatonin	Antioxidant	Phase II nonrandomized trial
Creatine	Cellular energy homeostasis	Preclinical
N- acetlycysteine	Selective vascular smooth muscle relaxation and vasodilatation	Phase II randomized trial

Summary of treatment to optimise perinatal outcome

A. Role of antenatal corticosteroids:¹⁴

- Reasonable to administer when pre-term delivery is anticipated, ideally within 1-7 days before birth and up to 34 weeks
- It is important to know that the "improvement" in umbilical artery Doppler that is commonly noticed following administration of antenatal corticosteroids is transient, and is thought to be the result of vasodilation of the fetoplacental arterial tree and increased fetal cardiac output rather than a true decrease in placental resistance. Therefore, these transient changes should not be interpreted as an improvement in fetal status and should not affect the management plan.

B. Role of magnesium sulphate:¹⁵

- Reasonable to administer for neuroprotection in women at risk of preterm birth with FGR up to 32 weeks
- Seen to decrease the risk of perinatal mortality, cerebral palsy, and gross motor dysfunction.

KEY RECOMMENDATIONS

- I. There is no medical therapy with proven benefit for treatment of FGR
- 2. Antenatal corticosteroids and magnesium sulphate can be used when indicated to optimise perinatal outcomes due to prematurity in cases of FGR.

SECTION 7: MANAGEMENT OF PREGNANCIES WITH FGR : MONITORING

Introduction

The purpose of monitoring pregnancies with FGR is to ensure continuation of the pregnancy till it is safe for the fetus to remain in utero and plan delivery when the risks of in utero environment exceed the risks of ex-utero environment. India is a large county with wide variations in facilities available across the country. It is expected that ultrasound and Doppler facilities with or without computerised cardiotocography machine (cCTG) or non-stress test (NST) will be present. Nevertheless, we have to accept the fact that in India the health care facilities are still not equitably distributed and hence rational modifications to monitoring protocol have to be made based on the practical availability of resources.

Rationale for plan of monitoring:

In early onset FGR, doppler changes follows classic cascade of doppler changes in uteroplacental insufficiency. The umbilical artery Doppler (UA) has an important role to play as abnormalities in UA vessel flow precede others and a cascade of Doppler abnormalities corelates well with the worsening clinical situation.

In late onset FGR the changes in umbilical artery Doppler (UA) may be minimal but there is a decrease in PI of Middle cerebral artery (MCA) due to reduction in resistance in cerebral circulation such that the cerebroplacental ratio shows the first signs of change and indicates onset of hypoxia. As the gestational age is past 32 weeks, decisions for monitoring have to be devised in order to ensure "intact survival" when delivered and to avoid "sudden intrauterine death" as this group of fetuses is less well compensated. This group may not follow the 'classic cascade' of doppler changes.

Modalities for fetal monitoring in FGR:

• Fetal movement count:

It is a simple, inexpensive and reasonable tool for fetal monitoring in FGR pregnancies in the home setting. Reduced fetal movement (FM) is defined as less than 10 movements in 2 hours during focused maternal counting on 'rest' in left lateral position. This method can be of use, especially in rural settings. It increases patient involvement and provides a basic safety net as an alarm can be raised when there is reduced perception of FM. It is a well-known fact that as fetal hypoxia sets in, fetal activity is reduced. So decreased fetal movement can trigger a hospital visit for further investigations of USG and or NST, while normal activity can help reassure the mother. Disadvantage of this method is lack of objectivity, hence risks of false alarms or false perception of movement despite fetal inactivity.

Fetal heart rate monitoring:

FGR is a universal indication to check for fetal wellbeing. Fetal heart rate characteristics reflect fetal oxygenation, gestational age, and maturational state of the nervous and cardiovascular systems. These features can be studied on an antepartum cardiotocograph (CTG) also known as non-stress test (NST). A normal baseline heart rate (110-160 bpm) with periodic accelerations (raise of 15 bpm above baseline lasting for 15s) defines a normal or "reactive" CTG. Absence of normal variability or presence of decelerations are non-reassuring. A reactive CTG is reassuring and has a good negative predictive value for fetal hypoxia (99.8%). In unselected pregnancies the rate of stillbirth in the week following a reactive CTG/NST is 1.9/1000. Conversely, an abnormal CTG has low specificity for predicting fetal hypoxia and further tests will be needed to ascertain the exact fetal condition.

• Computerised CTG (cCTG):

It is known to be better than the traditional CTG in predicting fetal hypoxia. cCTG can look into "short term variability" (STV) of fetal heart rate and reduced STV correlates well with fetal hypoxia increasing the sensitivity of this modality in fetal monitoring. However, the availability of cCTG in India is extremely limited and non-standardised. Hence in Indian context, unless the accessibility to cCTG 'standardised modality' (Dawes-Redman CTG Analysis) increases, incorporation of cCTG in fetal monitoring protocols is limited.

• Fetal biophysical profile (BPP):

It is a test that helps assess the possibility of fetal acidosis. The traditional BPP includes a 30 minute fetal ultrasound assessment of movements, breathing movements, tone and amniotic fluid level. In an unselected population the negative predictive value for fetal death with one week of a normal BPP is 99%. Since the traditional BPP takes time, a modified BPP with a CTG and amniotic fluid assessment has been suggested. If this this abnormal, a 30 minute BPP can be done. Thus, BPP is a more accurate predictor of fetal acid-base status at the time of testing than CTG/NST. Therefore, a five-component BPP can be used to clarify fetal acid base status when a nonreactive CTG/NST is obtained.

• Fetal Dopplers:

They are extremely important and easily available tool for monitoring pregnancies with FGR. Doppler studies of fetal vessels provide vital information about fetal hemodynamics and can be correlated to fetal cardiovascular response to the hypoxic/ metabolic changes happening in FGR.

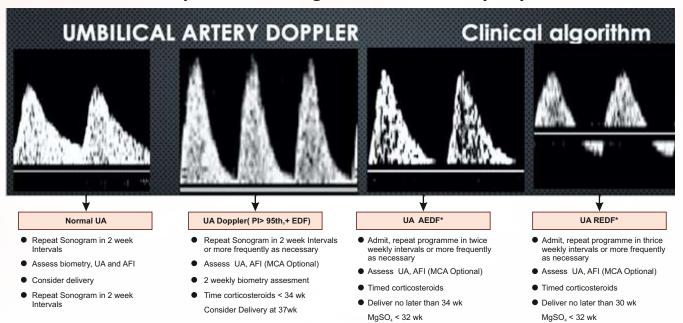
The important vessels studied are described in the table below:

Table 7.1 : Important Vessels in monitoring of FGR

Vessel	Relevance	Remark
Umbilical artery	Placental resistance, fetal	Increased resistance
	cardiac afterload	correlates with risk of
		hypoxia, absent or reversed
		diastolic flow indicates high
		risk of acidosis.
Middle cerebral artery	Cerebral hypoxia	Low PI indicates brain
		sparing effect & possible fetal
		hypoxia
Ductus venosus	Inflow of oxygenated blood to	Absent or reversed a wave
	fetus	associated with risk of fetal
		mortality and morbidity very
		near future.
Aortic Isthmus	Interface of oxygenated and	Abnormal flows indicate
	deoxygenated blood –	compromise of cerebral
	indicates oxygenation in the	oxygenation – increased risk
	cranial supply	of neurological injury
Maternal uterine artery	Placental resistance from	High resistance indicates
	maternal side	high placental resistance and
		suggests etiology of poor
		uteroplacental perfusion

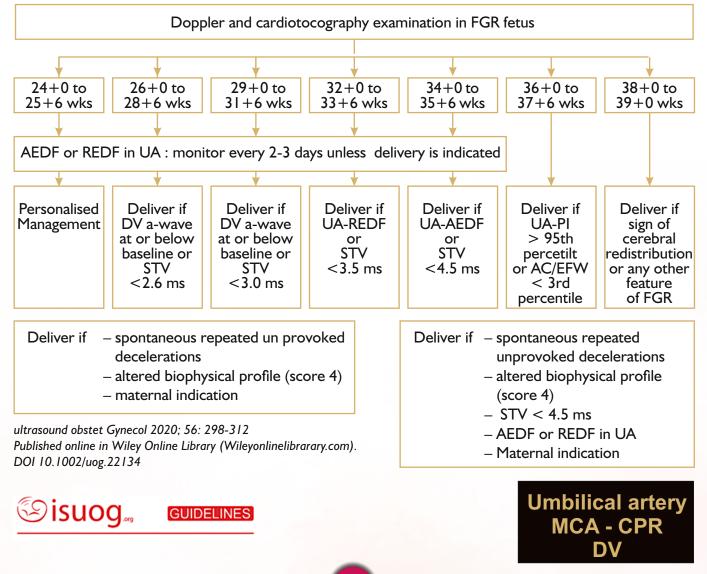
COMPREHENSIVE MONITORING STRATEGY 1,4,16,17

A combination of surveillance modalities is needed to accurately determine fetal acid base status at the time of testing, as well as allowing anticipation of future deterioration.


Table 7.2 : Suggested Monitoring protocol according to Doppler Abnormality

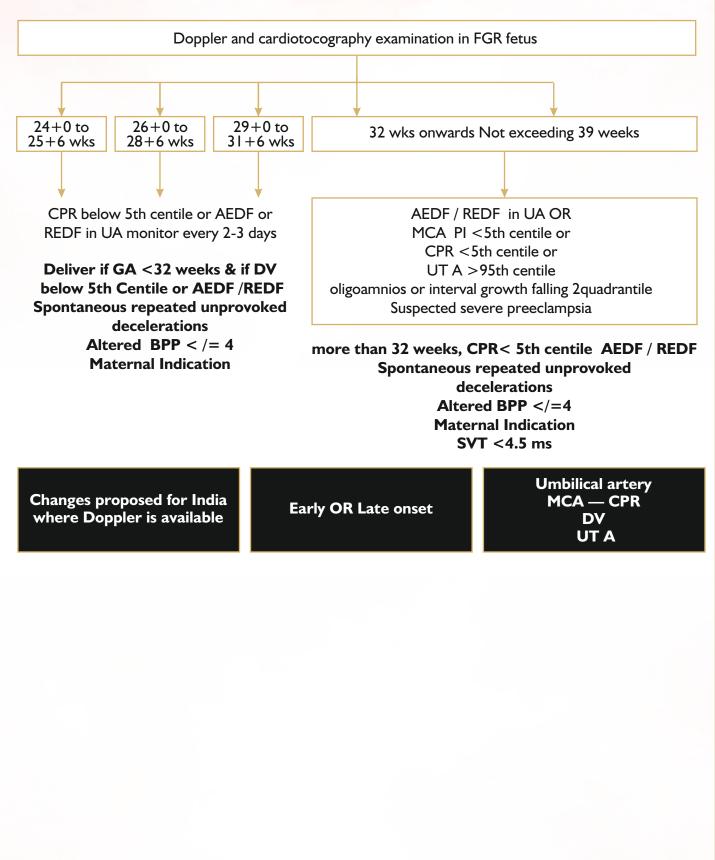
Category	Risk of stillbirth	Monitoring
SGA (EFW at 3rd -10 th	Low	 Growth scan every 2 weeks
percentile, normal fluid		 Doppler (UA, MCA) every I-2 weeks,
and Doppler studies)		BPP/NST once a week
		• At \geq 37 weeks consider BPP/NST I-2
		times per week.
Uncomplicated FGR at	Low	 Growth scan every 2 weeks
<3rd		 Doppler (UA, MCA) I –2 times per week,
Percentile or fall of		BPP/ NST 1-2 times per week
AC/EFW by 2		
quadrantile (normal		
liquor and normal		
Doppler studies)		
FGR with mild	Low	Consider inpatient monitoring, especially if other
abnormalities:		co-morbidities
Early Doppler		 Consider steroids for fetal lung maturation if at
changes:		risk of prematurity
a. UA PI $>$ 95th		 BPP/NST 2 times per week
percentile, or		 Doppler (UtA, UA, MCA, DV)
b. MCA PI <5th		2 times per week
percentile,		Growth scan every 2 weeks
or		
c. CPR < 5th		
percentile,		
or		
d. UtA PI >95th		
percentile		
 Oligohydramnios 		
Suboptimal interval		
growth		
FGR with umbilical	Moderate	Inpatient monitoring
artery	with median	• Steroids for fetal lung maturation
AEDF/REDF	time of	Consider MgSO4, if gestation is below 32 weeks

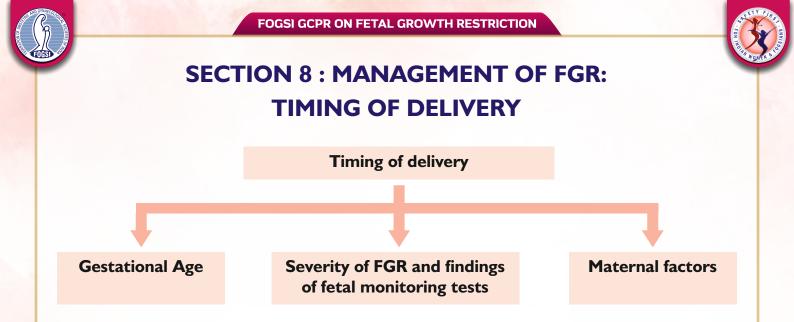
FOGSI GCPR ON FETAL GROWTH RESTRICTION


COMPREHENSIVE STRATEGY FOR DELIVERY DECISION OF FGR FETUS

Option I : Following with Umbilical artery only

The important vessels studied are described in the table below:


Option 2 : Following with ISUOG guidelines: Umbilical artery, cCTG, CPR & MCA PI



Key Recommendations:

I. Fetal movement counting is a simple and inexpensive tool monitoring in pregnancies with FGR in both high- and low-resource settings.

2. Surveillance in pregnancies with FGR should follow a uniform protocol that is based on a combination of biophysical profile, fetal heart rate monitoring by NST and Doppler assessment (umbilical artery and middle cerebral artery, with or without ductus venosus Doppler)

Table 8. I Timing and mode of delivery based on ultrasound findings ^{4,16,1}	Table 8.	I Timing and	node of delive	ry based on u	Itrasound find	ings 4,16,17
---	----------	--------------	----------------	---------------	----------------	--------------

Findings	Timing and mode of delivery
SGA (EFW at 3rd –9 th percentile, normal fluid and Doppler studies)	37–39 weeksMode of delivery: Induction
Uncomplicated FGR at <3rd percentile (normal fluid and Doppler studies)	37–38 weeksMode of delivery: Induction

FGR with mild abnormalities:	• 34 –37 weeks
 Early Doppler changes: a. UA PI > 95th percentile, 	 Mode of delivery: Caesarean section or induction
or	
b. MCA PI < 5th percentile,	
or	
c. CPR < 5th percentile, or	
d. UtA PI > 95th percentile	
OligohydramniosSuboptimal interval growth	

FGR with umbilical artery AEDF/REDF	• AEDF: 32–34 weeks
	• REDF: 30–32 weeks
	Mode of delivery: Caesarean section
FGR with abnormal ductus	• 26 – 30 weeks
venosus Doppler	Mode of delivery: Caesarean delivery

AEDF: Absent End Diastolic Flow; REDF: Reversed End Diastolic Flow

Table 8.2: Indications for delivery ⁴

Absolute indications	Relative indications
(Independent of gestational age)	(Threshold to deliver varies across various gestational age)
Maternal conditions needing	Absent ductus venosus a-wave
immediate delivery such as severe pre-eclampsia	 Biophysical profile <6/10 cCTG STV based on POG
Repetitive fetal heart	
decelerations, sinusoidal tracing, absent FHR variability with late decelerations	
 Biophysical profile score<4/10 	
• cCTG STV < 2.6 ms	

cCTG STV: computerized CTG Short Term Variability

Key Recommendations:

- I. Timing of delivery is based on gestational age, fetal assessment and maternal conditions.
- 2. The mode of delivery is based on gestational age, bishops score, maternal conditions and acid base status of the fetus.

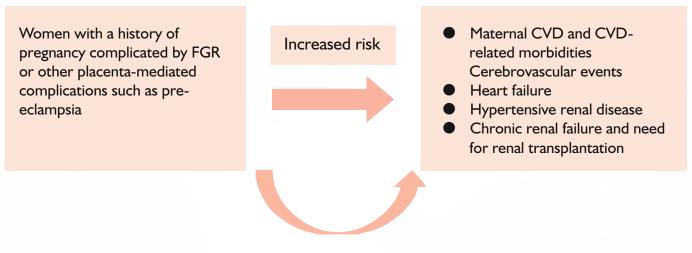
SECTION 9: POSTPARTUM FOLLOW-UP AND COUNSELLING FOR FUTURE PREGNANCIES

Figure 9. I

Neonate and Infant follow up: 4,18,19

Baby with growth restriction in-utero

Increased risk of immediate complications


Increased risk of long-term complications

- Complications related to prematurity
- Neonatal mortality (5-fold increase): Independently related to birth weight, irrespective of gestation.
- Affect postnatal growth, can affect height later on.
- Increased risk of adverse long-term neurodevelopmental outcomes.
- Increased risk of future noncommunicable diseases including obesity, diabetes, hypertension, and cardiovascular disease.

Closer follow-up than normally grown infants in the first year of life

Figure 9.2

Maternal Follow-up

Causal pathway is not clear, however, considerable evidence on the association between birthweight and maternal CVD has been accumulated. It is probable that the association between neonatal birthweight and maternal cardiovascular risk reflects both environmental and genetic influences.

Screen for CVD:²⁰

Currently, systematic and population-based follow-up after pregnancy complications for the prevention of future CVD is lacking, even in high-income countries that focus on population-based preventive medicine.

Present: Not clear when follow-ups should be initiated after pregnancy complications, how often follow-ups should be undertaken, or which strategies would be the most cost-effective at a population level.

Recommendation I:

Consider the following measures at 6–12 weeks after birth, and periodically thereafter, following placental-associated pregnancy complications including fetal growth restriction

- History and physical examination
- Blood pressure measurements
- Consider screening for other cardiovascular risk factors
 - Blood pressure
 - Proteinuria assessment
 - Evaluation of BMI and lifestyle
- Smoking
- Family history of CVD

Recommendation 2:

Once acknowledged, risk-reducing measures are implemented, including lifestyle modification (nutrition and physical activity, treating obesity and overweight, controlling hypertension, and smoking cessation)

Future: Research is needed to discriminate between the specific effects of pregnancy and prepregnancy factors, as well as their interaction, on future maternal CVD.

COUNSELLING REGARDING FUTURE PREGNANCIES

Step I: Assess the risk of recurrence⁴

The underlying etiology, severity and timing of onset, and the presence or absence of modifiable risk factors can all be used to assess the likelihood of recurrence of FGR in subsequent pregnancies.

Risk of recurrence based on severity and onset of FGR	Risk of recurrence based on placental histopathology in cases of placenta - mediated FGR
Majority data on the risk of recurrence is based on studies evaluating hypertensive complications of pregnancy. There is evidence for recurrence in cases with early-onset hypertensive complications. Data on the recurrence of FGR is scarce, however risk of recurrence is most often related to the severity of FGR.	Results of the placental histopathological examination may provide valuable information regarding the risk of recurrence, as certain types of placental pathologies are associated with a relatively high recurrence rate.

<u>Conclusion</u>: Counselling regarding the risk of recurrence should be based on the risk factors of the individual patient, severity of FGR as reflected by timing of onset and Doppler findings, co-presence of pre-eclampsia, and placental histopathology.

Step 2: Preconception counselling and management of future pregnancies⁴

History and Examination	Identify modifiable risk factors for FGR: Smoking Poor nutritional status Chronic medical illness including hypertension
Investigations	 I. Testing for Anti-phospholipid antibody: Insufficient evidence to justify routine screening for aPL antibodies in women with prior FGR. Screening for aPL antibodies is recommended in women with a history of thromboembolism or recurrent pregnancy loss and may be considered in selected cases of women with a history of severe FGR associated with severe early -onset

	pre-eclampsia, when placental
	examination shows features of
	severe maternal vascular
	malperfusion, especially central or
	multiple areas of villous infarction
	that are due to multiple spiral arter
	thromboses.
	till offiboses.
	2. Routine screening for inherited
	thrombophilia: No indication
Interventions	I. Potential benefit: Aspirin
	- Current evidence focused on the
	prevention of pre-eclampsia as the
	primary outcome.
	- Evidence on the prevention of
	recurrence of FGR in women with
	history of FGR are limited.
	- Recommendation: Aspirin should b
	considered in women with past
	history of FGR only if they have ris
	factors for pre-eclampsia at the tim
	of the next pregnancy.
	2. In research setting: LMWH
	Data on the role of LMWH to prevent
	recurrence of placenta mediated
	complications including FGR are conflictin LMWH therapy should not be used in
	women with a past history of FGR except
	in a research setting.
	3. Unproven benefit: Should not be
	routinely offered
	- Bed rest
	- Nutritional supplements
Advice for future pregnancies	- Optimize chronic medical illness
	including hypertension ; correct
	anemia
	- Manage as high-risk pregnancy
	 Stratify risk in early pregnancy by
	 Stratify risk in early pregnancy by means of prenatal screening with
	means of prenatal screening with
	means of prenatal screening with biochemical markers (PAPP -A, beta
	means of prenatal screening with

FOGSI GCPR ON FETAL GROWTH RESTRICTION

- Recommend monitoring of weight gain and informing women about their target weight gain range
- Closer antenatal surveillance, including close monitoring of fetal growth and maternal blood pressure

ST CT V LIGAT SHUGS

SECTION 10: SUMMARY

Identify risk of FGR based on history, biochemical and ultrasound markers

Low risk of FGR based on history, biochemical and ultrasound markers

- o Routine antenatal care
- o Serial measurement of symphysis-fundal height (SFH)
- O Ultrasound examination if low
 SFH or routine examination at
 32-36 weeks

High risk of FGR based on history, biochemical and ultrasound markers

- o Preventive interventions
- o Strict Antenatal fetal surveillance
- Monitor fetal growth at 24-28 weeks by ultrasound examination

Identify a small fetus Differentiate between SGA and FGR fetus Define FGR using the Delphi consensus and classify into early or late onset FGR

Investigate the cause of FGR

- History: Detailed history at booking, current pregnancy complications, past obstetric and medical history, family history
- Ultrasound examination

Monitoring and interventions for FGR (based on severity of biometric and functional parameters and maternal status

- Daily fetal movement counting
- Biophysical profile, NST (frequency based on severity of FGR)
- Fetal growth every 2 weeks
- Doppler (frequency based on severity of FGR)
- Antenatal corticosteroids as per standard protocol

Delivery considerations

- Timing of delivery and mode of delivery based on gestational age, maternal and fetal status
- Magnesium sulphate as per standard indications for fetal neuroprotection
- Continuous fetal heart rate monitoring in labour

Postpartum follow up and preconception counselling for future pregnancy

- Infant follow up
- Identify modifiable risk factors and educate regarding the same with an aim to optimize the medical condition before next pregnancy
- Assess regarding risk of recurrence and stratify risk
- Educate about long term maternal and fetal consequences

References

References:

I. Lees CC, Stampalija T, Baschat A, da Silva Costa F, Ferrazzi E, Figueras F, Hecher K, Kingdom J, Poon LC, Salomon LJ, Unterscheider J. ISUOG Practice Guidelines: diagnosis and management of small-forgestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020 Aug;56(2):298-312.

2. McCowan LM, Figueras F, Anderson NH. Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy. Am J Obstet Gynecol. 2018 Feb;218(2S):S855-S868.

3. Gordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333-339.

4. Melamed N, Baschat A, Yinon Y, Athanasiadis A, Mecacci F, Figueras F, Berghella V, Nazareth A, Tahlak M, McIntyre HD, Da Silva Costa F, Kihara AB, Hadar E, McAuliffe F, Hanson M, Ma RC, Gooden R, Sheiner E, Kapur A, Divakar H, Ayres-de-Campos D, Hiersch L, Poon LC, Kingdom J, Romero R, Hod M. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int J Gynaecol Obstet. 2021 Mar;152 Suppl 1:3-57.

5. Smith GCS. Universal screening for foetal growth restriction. Best Pract Res Clin Obstet Gynaecol. 2018;49:16-28.

6. McCowan LM, Thompson JM, Taylor RS, et al. Prediction of smallfor gestational age infants in healthy nulliparous women using clinical and ultrasound risk factors combined with early pregnancy biomarkers. PLoS One. 2017;12(1):e0169311

7. Roberge S, Nicolaides K, Demers S, Hyett J, Chaillet N, Bujold E. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis. Am J Obstet Gynecol. 2017;216(2):110-120.e6.

8. Robert Peter J, Ho JJ, Valliapan J, Sivasangari S. Symphysial fundal height (SFH) measurement in pregnancy for detecting abnormal fetal growth. Cochrane Database Syst Rev. 2015(9):CD008136.

9. Bakalis S, Cao K, Johal N, Cuckow P, Pandya P. The value of the routine third trimester ultrasound scan in antenatal care: Problems with guidance and outdated data in a highly technological field. Eur J Obstet Gynecol Reprod Biol. 2020;245:51-55.

10. Salomon LJ, Alfirevic Z, Da Silva CF, et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet Gynecol. 2019;53(6):715-723.

II. Papageorghiou AT, Ohuma EO, Altman DG, et al. International standards for fetal growth based on serial ultrasound measurements:the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):869-879.

12. Kiserud T, Piaggio G, Carroli G, et al. The World Health Organization fetal growth charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med. 2017;14(1):e1002220.

13. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics and the Society for Maternal-Fetal Medicine. ACOG practice bulletin no. 204: fetal growth restrictions Obstet Gynecol. 2019;133(2):e97-e109.

14. Melamed N, Pittini A, Barrett J, et al. Antenatal corticosteroids and outcomes of small-for-gestationalage neonates. Obstet Gynecol. 2016;128(5):1001-1008.

15. American College of Obstetricians and Gynecologists Committee on Obstetric Practice; Society for Maternal-Fetal Medicine. Committee Opinion No. 455: Magnesium sulfate before anticipated preterm birth for neuroprotection. Obstet Gynecol. 2010;115(3):669-671.

 Thornton JG, Hornbuckle J, Vail A, Spiegelhalter DJ, Levene M. GRIT study group. Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial. Lancet. 2004;364(9433):513-520.

17. Lees C, Marlow N, Arabin B, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol. 2013;42(4):400-408.

18. Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. New Eng J Med. 2005;353(17):1802-1809.

19. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. New Engl J Med. 2008;359(1):61-73.

20. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet. 2001;357(9273):2002-2006.